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Abstract

This article proposes a general technique to construct arbitrarily high or-
der rational one-point iterative equation solvers based on truncated Taylor
expansion from lower order schemes. With adding one more function call, an
iterative equation solver of convergence order n can be accelerated to order
(2n − 1). Many existing (some recently published) one-point and two-point
iterative equation solvers are special cases of the proposed construction. The
proposed approach may be used to obtain new iterative equation solvers.

TAYLOR EXPANSION AND THE ORDER OF

CONVERGENCE OF AN ITERATIVE SOLVER

An one-point iterative equation solver for f(x) = 0 can be generally written as a
fixed-point iteration as

xk+1 = xk + δ(f(xk), f
′(xk), f

′′(xk)...) = xk + δk. (1)

If the solver is of convergence order n, we also have

f(xk + δk) = O(δn
k ). (2)

With a finite Taylor expansion of the equation above we have

f(xk + δk) ∼ f + f ′δk +
f ′′

2
δ2
k + ... +

f (n−1)

(n − 1)!
δn−1
k = O(δn

k )). (3)

Take n = 2 and ignore terms that has same of higher orders, one has f(xk+δk) ∼
f + f ′δk = 0. Solve for δk one arrives at the well-known Newton’s method[4]

δk = − f(xk)

f ′(xk)
, (4)
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and the expression of δk is rational function of f, f ′.

Take n = 3 and ignore terms that have same of higher orders, one has f(xk +
δk) ∼ f +f ′δk +f ′′δ2

k/2 = 0. Solve for δk one arrives at the famous Halley’s irrational
method[5]

δk =
sgn(f ′(xk))

f ′′(xk)

(

√

(f ′(xk))2 − 2f(xk)f ′′(xk) − |f ′(xk)|
)

, (5)

but the expression is already irrational.

For n = 4, 5, explicit, irrational solutions of truncated Taylor expansions are
available but difficult to implement; for n > 5 no general explicit solution is available[3].

In all the derivations later we assume the first derivative of f(x) is non-zero at
the solution.

RATIONAL HIGH-ORDER EQUATION SOLVERS

To avoid irrational expressions of an iterative equation solver, we may use lower-

order rational iterative solvers to construct higher order solvers. For example, for
n = 3, we write the equation for truncated Taylor expansion as (dropping the
subscript k for simplicity)

f + δ(f ′ +
f ′′

2
δ) = 0.

We then use the Newton’s second-order solution δnewton = −f/f ′ to substitute the
δ inside the parenthesis and obtain

f + δ(f ′ − f ′′

2
δnewton) ∼ f + δ(f ′ − ff ′′

2f ′
) = 0.

Solve for δ we obtain Halley’s rational method that

δhalley = − 2ff ′′

2(f ′)2 − ff ′′
, (6)

which is a rational method.

In general if some lower order methods have been constructed that obtain and
we have for each i = 2, 3, ....(n − 1) a rational method that is ith-order convergent
till i = n − 1. A nth-order can be constructed with

f + δ(f ′ +
f ′′

2
∆ + ... +

f (n−1)

(n − 1)!
∆n−2) = 0, (7)
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where ∆ is a (n − 1)th-order solution. Then one obtains

δ = − f

f ′ + f ′′

2
∆ + ... + f (n−1)

(n−1)!
∆n−2

.

Now we prove the above construction gives an iterative method of order n. The
above equation can be written as

f(x) + δ(f ′ +
f ′′

2
∆ + ... +

f (n−1)

(n − 1)!
∆n−2) = 0. (8)

Because ∆ is a (n − 1)th-order solution we have, f(x + ∆) = O(∆n−1) and the
Taylor expansion

f(x + ∆n−1) = f(x) + ∆(f ′ +
f ′′

2
∆ + ... +

f (n−2)

(n − 2)!
∆n−3) = O(∆n−1). (9)

Subtracting eq. (9) form eq. (8) one has

(δ − ∆)(f ′ +
f ′′

2
∆ + ... +

f (n−2)

(n − 2)!
∆n−3) = O(∆n−1, δ∆n−2). (10)

This tell us that δ and ∆ are of the same order for n > 2 and

(δ − ∆) = O(∆n−1).

We expand f(x + δ[n]) to order n and observe that

f(x + δ) = f + f ′δ +
f ′′

2
δ2 + ... +

f (n−1)

(n − 1)!
δn−1 + O(δn). (11)

Subtracting eq. (8) from the above equation one finds that

f(x + δ) = δ(
f ′′

2
∆(δ − ∆) + ... +

f (n−1)

(n − 1)!
(δn−1 − ∆n−1)) + O(δn). (12)

However with applying the result that δ − ∆ = O(∆n−1) from eq. (10)we have

f(x + δ) = O(δn). (13)

Thus eq. (7) is a nth-order convergent equation solving scheme and it is a rational

one.
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SIMPLIFIED HIGH-ORDER ITERATIONS

Because a higher order scheme is in general more complex than a lower order scheme,
it is desired to reduce the complexity of the nth-order scheme with schemes of orders
lower than (n − 1) to replace the (n − 1)th-order scheme as much as possible. A
possibility is to solve

f + δ̂(f ′ +
f ′′

2
∆[n−1] +

f ′′′

6
∆[n−2]... +

f (n−1)

(n − 1)!
∆n−2

[2] ) = 0, (14)

where ∆[i] is solution of an ith-order scheme, and solve for δ̂.

The pattern here is that each mth derivative f (m) with m > 2, has a multiplier
of at least a (n + 1 − m)th-order iterative solution. Taking a solution with a higher
order in any of the terms would always works but does not increase the overall order
of convergence. Since a lower order ∆ is simpler in expression than a higher order
∆, eq. (14) provides a simpler scheme than eq. (7), however the solution is also
nth-order and it can be proven as described below.

We are about the evaluate the difference between δ in eq. (7) and δ̂ in eq. (14).
We have

δ̂ − δ = f(x)(T−1
1 − T−1

2 ) =
f(x)

T1T2

(T2 − T1),

where the terms T1 and T2 are defined as

T1 = f ′ +
f ′′

2
∆[n−1] +

f ′′′

6
∆[n−2]... +

f (n−1)

(n − 1)!
∆n−2

[2] ,

and

T2 = f ′ +
f ′′

2
∆[n−1] +

f ′′′

6
∆[n−1]... +

f (n−1)

(n − 1)!
∆n−2

[n−1].

Therefore

T2 − T1 =
f ′′′

6
(∆2

[n−1] − ∆2
[n−2]) + ... +

f (n−1)

(n − 1)!
(∆n−2

[n−1] − ∆n−2
[2] ). (15)

Next we evaluate the sizes of the term (∆m
[n−1] − ∆m

[n−m]) for m = 2, 3, ..., n − 2.
By definition one has the following

f(x + ∆[n−1]) = O(∆n−1
[n−1]),
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and
f(x + ∆[n−m]) = O(∆n−m

[n−m]).

Take the difference between the two expressions one finds that

f(x + ∆[n−1]) − f(x + ∆[n−m]) = f ′(θ)(∆[n−1] − ∆[n−m]) = O(∆n−m
[n−m]), (16)

where θ is some point between x+∆[n−1] and x+∆[n−m], by the mean-value theorem.

Therefore we have ∆[n−1] and ∆[n−m] are of the same order ∆, and then use
eq. (16), we arrive at

(∆m
[n−1] − ∆m

[n−m]) = (∆[n−1] − ∆[n−m])O(∆m−1) = O(∆n−1). (17)

Because the above is true, this time eq. (15) becomes

T2 − T1 =
f ′′′

6
(∆2

[n−1] − ∆2
[n−2]) + ... +

f (n−1)

(n − 1)!
(∆n−2

[n−1] − ∆n−2
[2] ) = O(∆n−1).

Thus

δ̂ − δ =
f(x)

T1T2

(T2 − T1) = f(x)O(∆n−1).

However f(x) = O(∆) because f(x + ∆) = f(x) + f ′(x)∆ + ... = o(∆) by definition
of order of convergence for each ∆[i] involved in our discussion, therefore we have

δ̂ − δ = O(∆n), (18)

which means

δ̂ = − f(x)

f ′ + f ′′

2
∆[n−1] +

f ′′′

6
∆2

[n−2]... + f (n−1)

(n−1)!
∆n−2

[2]

provides a nth-order convergent iterative equation solver

xk+1 = xk + δ̂(xk). (19)

.
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ACCELERATED ITERATIVE EQUATION SOLVERS

For a one-point iteration scheme of a convergence order n with

xk+1 = xk + δ̂(xk)

where δ̂(xk) = δ̂(f(xk), f
′(xk), ..., f

(n−1)(xk)), adding one function call f(xk+1) to
f(xk) will raise the order of convergence from n to (2n− 1). This is to say that the
scheme follows

x̂k+1 = xk + δ̂(f(xk) + f(xk+1), f
′(xk), ..., f

(n−1)(xk)), (20)

is (2n − 1)th-order convergent[3]. Since we are now able to construct an one-point

iterative solver with an arbitrary order of convergence with eq. (19), it is desired to
accelerate it to order (2n − 1) by adding just one function call.

Next we list some accelerated iterative schemes constructed by the approach
described in the last section.

ACCELERATED THIRD ORDER NEWTON SCHEME

The Newton’s method eq. (4) is accelerated to a third-order scheme

xk+1 = xk −
f(xk) + f(yk)

f ′(xk)
, (21)

where yk = xk−f(xk)/f
′(xk). Three function calls are needed for the third-order, its

efficiency-index[2] is 3
√

3 = 1.442. The accelerated scheme[8] is faster than Newton’s
original method with an efficiency-index

√
2 = 1.414.

ACCELERATED FIFTH ORDER HALLEY SCHEMES

The Halley’s irrational scheme eq .(5) can be accelerated to fifth-order[6] by solving
again that

f(xk) + f(xk + δk) + f ′(xk)∆k +
f ′′(xk)

2
∆2

k = 0,

with
xk+1 = xk + ∆k. (22)
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However with our construction method eq. (19) for n = 3, we have the third-

order rational Halley’s method eq. (6), and it can be accelerated to a fifth-order

scheme[7] by adding one function calls that

yk = xk −
2f(xk)f(xk)

′′

2(f(xk)′)2 − f(xk)f ′′(xk)
,

xk+1 = xk −
2(f(xk) + f(yk))f(xk)

′′

2(f(xk)′)2 − (f(xk) + f(yk))f ′′(xk)
. (23)

ACCELERATED SEVENTH ORDER SCHEMES

With our construction method eq. (19) for n = 4, a rational seventh-order scheme
can be constructed as

δ̂4th = − f

f ′ + f ′′

2
∆Halley + f ′′′

6
∆2

Newton

,

where ∆Halley is defines by eq. (6) and ∆Newton is the original Newton’s solution
by eq. (4). This fourth-order scheme can be accelerated to seventh-order and the
solution can be written as

yk = xk + δ̂4th, (24)

xk+1 = xk −
f(xk) + f(yk)

f ′(xk) − (f(xk)+f(yk))(f ′′(xk))2

2(f ′)2−(f(xk)+f(yk))f ′′
+ f(xk)′′′(f(xk)+f(yk))2

6(f ′(xk))2

.

In the above construction, ∆Newton can be replaced by any rational iterative
solution that is second-order or higher (say, ∆Halley) and one obtains a different
seventh-order scheme. ∆Halley can be any other third-order, one-point iterative so-

lution. For example, with Halley’s irrational solution to construct δ̂4th, then by
adding f(yk) to f(xk) and reapply the fourth-order iteration, one obtains another
seventh-order method. However this time the scheme is irrational.

HIGHER-ORDER ITERATIVE SCHEMES

In principle, given an arbitrarily specified convergence order n, an rational iterative
equation solver of convergence order n can always be constructed. For simplicity
lower-order schemes should be employed whenever possible and we believe eq. 19)
gives the least complicated construction of this type of rational iterative solvers.
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However, by mixing and matching lower-order schemes, there is a combination ex-
plosion of the way to construct nth-order one-point iterative solvers by the approach
described in this paper.

With adding a single function call f(x+ δ̂) to f(x) replacing f(x) in a one-point

iterative equation solver, its order of convergence is raised to 2n − 1.

CONCLUSION

By consecutively applying lower-order rational iterative solutions with a truncated
Taylor expansion of f(x+δ) to order n and obtain a linear equation of δ, an iterative
solver of arbitrary nth-order convergence can be constructed. By adding f(x+ δ) to
f(x) in the nth-order scheme obtained and reapply the scheme, a (2n − 1)th-order

convergent iterative scheme can be constructed. Many existing iterative solvers are
just special cases of this construction. It is possible to construct new high-order

iterative equation solvers with this construction.

This work was performed under the auspices of the U.S. Department of Energy

by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
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